Linux系统中的 iostat是I/O statistics(输入/输出统计)的缩写,iostat工具将对系统的磁盘操作活动进行监视。它的特点是汇报磁盘活动统计情况,同时也会汇报出CPU使用情况。同vmstat一样,iostat也有一个弱点,就是它不能对某个进程进行深入分析,仅对系统的整体情况进行分析。iostat属于sysstat软件包。可以用yum install sysstat 直接安装。
命令格式#
$ iostat [参数][时间][次数]
命令功能#
通过iostat方便查看CPU、网卡、tty设备、磁盘、CD-ROM 等等设备的活动情况, 负载信息。
命令参数#
命令 | 描述 |
---|---|
-C | 显示CPU使用情况 |
-d | 显示磁盘使用情况 |
-k | 以 KB 为单位显示 |
-m | 以 M 为单位显示 |
-N | 显示磁盘阵列(LVM) 信息 |
-n | 显示 NFS 使用情况 |
-p[磁盘] | 显示磁盘和分区的情况 |
-t | 显示终端和CPU的信息 |
-x | 显示详细信息 |
-V | 显示版本信息 |
使用实例#
例一
:显示所有设备负载情况
$ iostat
Linux 3.10.0-327.el7.x86_64 (s88) 2017年01月22日 _x86_64_ (24 CPU)
avg-cpu: %user %nice %system %iowait %steal %idle
0.62 0.00 0.20 1.46 0.00 97.72
Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda 64.59 1726.21 255.56 3159941 467823
dm-0 3.55 141.11 4.46 258319 8162
dm-1 0.10 0.83 0.00 1520 0
dm-2 0.10 2.78 1.14 5080 2082
dm-3 60.44 1565.98 248.84 2866640 455511
dm-4 27.54 463.29 105.38 848088 192897
dm-5 1.25 25.57 17.57 46804 32170
dm-6 0.64 12.86 2.07 23535 3786
dm-7 4.14 80.43 36.60 147240 67004
dm-8 1.13 20.52 2.42 37566 4428
dm-9 1.13 21.18 2.40 38766 4396
dm-10 1.15 21.35 2.41 39082 4412
dm-11 0.70 14.40 2.21 26355 4043
dm-12 1.42 22.42 6.85 41035 12541
dm-13 0.46 12.17 1.25 22275 2289
dm-14 1.15 20.47 2.42 37470 4432
dm-15 8.28 101.07 16.51 185018 30220
dm-16 1.10 20.02 2.45 36646 4488
dm-17 1.81 29.08 4.15 53232 7591
dm-18 0.68 18.40 1.43 33689 2611
dm-19 2.33 43.89 4.63 80340 8483
说明:
cpu属性值说明:
%user:CPU处在用户模式下的时间百分比。 %nice:CPU处在带NICE值的用户模式下的时间百分比。 %system:CPU处在系统模式下的时间百分比。 %iowait:CPU等待输入输出完成时间的百分比。 %steal:管理程序维护另一个虚拟处理器时,虚拟CPU的无意识等待时间百分比。 %idle:CPU空闲时间百分比。备注:
如果%iowait的值过高,表示硬盘存在I/O瓶颈,%idle值高,表示CPU较空闲,如果%idle值高但系统响应慢时,有可能是CPU等待分配内存,此时应加大内存容量。%idle值如果持续低于10,那么系统的CPU处理能力相对较低,表明系统中最需要解决的资源是CPU。disk属性值说明:
rrqm/s: 每秒进行 merge 的读操作数目。即 rmerge/s wrqm/s: 每秒进行 merge 的写操作数目。即 wmerge/s r/s: 每秒完成的读 I/O 设备次数。即 rio/s w/s: 每秒完成的写 I/O 设备次数。即 wio/s rsec/s: 每秒读扇区数。即 rsect/s wsec/s: 每秒写扇区数。即 wsect/s rkB/s: 每秒读K字节数。是 rsect/s 的一半,因为每扇区大小为512字节。 wkB/s: 每秒写K字节数。是 wsect/s 的一半。 avgrq-sz: 平均每次设备I/O操作的数据大小 (扇区)。 avgqu-sz: 平均I/O队列长度。 await: 平均每次设备I/O操作的等待时间 (毫秒)。 svctm: 平均每次设备I/O操作的服务时间 (毫秒)。 %util: 一秒中有百分之多少的时间用于 I/O 操作,即被io消耗的cpu百分比备注:
如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明I/O 队列太长,io响应太慢,则需要进行必要优化。如果avgqu-sz比较大,也表示有当量io在等待。
例二
:定时显示所有信息
## 每隔 2秒刷新显示,且显示3次
$ iostat 2 3
例三
:显示指定磁盘信息
$ iostat -d sda1
例四
:显示tty和Cpu信息
$ iostat -t
例五
:以M为单位显示所有信息
$ iostat -m
例六
:查看TPS和吞吐量信息
$ iostat -d -k 1 1
说明: tps:该设备每秒的传输次数(Indicate the number of transfers per second that were issued to the device.)。“一次传输”意思是“一次I/O请求”。多个逻辑请求可能会被合并为“一次I/O请求”。“一次传输”请求的大小是未知的。 kB_read/s:每秒从设备(drive expressed)读取的数据量; kB_wrtn/s:每秒向设备(drive expressed)写入的数据量; kB_read:读取的总数据量;kB_wrtn:写入的总数量数据量; 这些单位都为Kilobytes。 上面的例子中,我们可以看到磁盘sda以及它的各个分区的统计数据,当时统计的磁盘总TPS是22.73,下面是各个分区的TPS。(因为是瞬间值,所以总TPS并不严格等于各个分区TPS的总和)
例七
:查看设备使用率(%util)、响应时间(await)
$ iostat -d -x -k 1 1
说明: rrqm/s: 每秒进行 merge 的读操作数目.即 delta(rmerge)/s wrqm/s: 每秒进行 merge 的写操作数目.即 delta(wmerge)/s r/s: 每秒完成的读 I/O 设备次数.即 delta(rio)/s w/s: 每秒完成的写 I/O 设备次数.即 delta(wio)/s rsec/s: 每秒读扇区数.即 delta(rsect)/s wsec/s: 每秒写扇区数.即 delta(wsect)/s rkB/s: 每秒读K字节数.是 rsect/s 的一半,因为每扇区大小为512字节.(需要计算) wkB/s: 每秒写K字节数.是 wsect/s 的一半.(需要计算) avgrq-sz:平均每次设备I/O操作的数据大小 (扇区).delta(rsect+wsect)/delta(rio+wio) avgqu-sz:平均I/O队列长度.即 delta(aveq)/s/1000 (因为aveq的单位为毫秒). await: 平均每次设备I/O操作的等待时间 (毫秒).即 delta(ruse+wuse)/delta(rio+wio) svctm: 平均每次设备I/O操作的服务时间 (毫秒).即 delta(use)/delta(rio+wio) %util: 一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的,即 delta(use)/s/1000 (因为use的单位为毫秒) 如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。 idle小于70% IO压力就较大了,一般读取速度有较多的wait。 同时可以结合vmstat 查看查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)。 另外 await 的参数也要多和 svctm 来参考。差的过高就一定有 IO 的问题。 avgqu-sz 也是个做 IO 调优时需要注意的地方,这个就是直接每次操作的数据的大小,如果次数多,但数据拿的小的话,其实 IO 也会很小。如果数据拿的大,才IO 的数据会高。也可以通过 avgqu-sz × ( r/s or w/s ) = rsec/s or wsec/s。也就是讲,读定速度是这个来决定的。 svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm 的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。await 的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。 队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。
形象的比喻:
r/s+w/s 类似于交款人的总数 平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数 平均服务时间(svctm)类似于收银员的收款速度 平均等待时间(await)类似于平均每人的等待时间 平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少 I/O 操作率 (%util)类似于收款台前有人排队的时间比例 设备IO操作:总IO(io)/s = r/s(读) +w/s(写) =1.46 + 25.28=26.74 平均每次设备I/O操作只需要0.36毫秒完成,现在却需要10.57毫秒完成,因为发出的 请求太多(每秒26.74个),假如请求时同时发出的,可以这样计算平均等待时间: 平均等待时间=单个I/O服务器时间*(1+2+…+请求总数-1)/请求总数 每秒发出的I/0请求很多,但是平均队列就4,表示这些请求比较均匀,大部分处理还是比较及时。
例八
:查看cpu状态
$ iostat -c 1 3